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Integrated Reliability and Performance 
Modeling Environment 

ARO STTR Phase I Final Report 
October 1995 
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College of William and Mary 

Project Summary 

The Army Small Business Technology Transfer (STTR) project, Integrated Reliability 
and Performance Modeling Environment, examined the feasibility of producing a commercial 
software environment for performance and reliability modeling that supports new techniques for 
analyzing large complex systems. 

The project was a joint effort between Genoa Software Systems and the Computer 
Science Department of the College of William and Mary sponsored by the Army Research Office 
(ARO). Dr. Kishor Trivedi of the Electrical Engineering Department at Duke University provided 
guidance as a consultant. William and Mary also received partial matching funds from the VA 
Center for Innovative Technology (CIT). 

The project focused on exploring possible software architectures for a modeling 
environment that facilitates the use of both recent and classical advances in the specification and 
analysis of complex stochastic models. During Phase I progress, a system architecture was 
developed and refined, and a working prototype of the envisioned environment was constructed. 

This report describes the project scope and goals, summarizes the technical results, and 
discusses commercialization issues. Accesion  For 
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I. Project Scope and Goals 

The ultimate goal of this project was to close the gap between the state-of-research and 
state-of-practice in modeling by weaving new techniques available from academia into a toolset 
that would significantly increase the ability to analyze large, complex systems. We proposed to 
develop a toolset that supports modeling as an integral part of the design process, shields the user 
from complex modeling languages, and takes advantage of the most appropriate formalism(s) and 
state-of-the-art solution methods. The end-product was intended to integrate many of the recent 
advances for modeling into a set of open-architecture tools suitable for commercial use. 

The primary technical objectives for phase I were to develop a viable toolset design and 
architecture, validate the design using a prototype implementation, and experiment with the 
practical application of new ideas (e.g., parallelism and decomposition.) 

The primary commercial objectives for phase I were to select an initial target marketplace, 
develop a viable plan for marketing, and ensure the product matches the chosen market and to 
identify potential commercialization partners. 

Background and Motivation 

Different forms of stochastic models are useful for quantitatively analyzing complex 
systems in several engineering disciplines including computer architecture, communication 
networks, and aerospace engineering. The chief difficulty with current modeling techniques is 
that they often require immense computational resources in order to analyze even moderately 
complex systems. Because of these limitations, accurate analysis of large complex systems is 
often costly and frequently impractical. 

Researchers have repeatedly demonstrated dramatic improvements in the capacity to 
analyze large and complex systems using techniques such as time-scale and hierarchical 
decomposition, hybrid models and iterative solution methods. Unfortunately, such techniques are 
often difficult, if not impossible, to apply with most commercially available modeling tools due to 
their monolithic restrictive architectures. 

Two concepts pervade the design of any modeling toolset: formalisms and solution 
methods. A formalism is a language in which models can be precisely expressed. Once specified 
using an appropriate formalism, models can be analyzed using one of many available solution 
methods in order to obtain performance measures, reliability factors, and other results. 

The focus of this project was to design a system architecture that would include the 
fundamental underpinnings necessary for the practical application of such methods. At a 
minimum, such a system must support communication and interaction among submodels, include 
multiple formalisms and solution methods, and naturally allow parallel and distributed 
computation. 

Existing Approaches 

Existing commercial tools for supporting performance, reliability, and availability 
modeling are stretched to the limit by even relatively simple systems. Most available tools support 
only a single formalism and solution technique and do not allow the combination of submodels of 
different types. Support for parallel and distributed analysis is typically weak or non-existent. 

Commercial firms have tended to invest solely in the user-interface aspects of modeling 
tools, rather than in improving the underlying technology. Conversely, academic tools typically 



explore a few isolated, new techniques to the point necessary for demonstrating feasibility, but 
rarely develop a complete product—that is, a tool supported by adequate documentation, easy to 
operate user interfaces, on-line help, and training material. 

Other than efficient combinatorial methods that apply only to restricted problems, the 
most dramatic advances in modeling capacity over the last few decades are based upon some form 
of stochastic decomposition. Thus one of our primary technical goals for the toolset is to provide 
several mechanisms for composing models from individual submodels, both for purposes of 
model specification and for applying efficient solution methods. 

II. Technical Results 

This section discusses some of the important technical results of the phase I effort. The 
first subsection describes the more important requirements that the eventual toolset must meet, 
and our initial approaches to satifying them. The toolset architecture is described in the next 
subsection, followed by a description of the constructed prototype. 

Hierarchical models and availability of multiple formalisms 

The ability to describe a complex system as a set of interacting models is a fundamental 
requirement for an integrated modeling environment. This goal can be accomplished in many 
ways. Certainly, at the user-interface level, we want to be able to break down a model into 
submodels in a hierarchical fashion. Each submodel can then be expressed in the most appropriate 
formalism. This solves the specification problem, but does not address the solution aspects. To 
address this deficiency, one of the Phase I proposal goals was to exploit the decomposition into 
submodels when solving, as well as specifying, the model. 

As a result of developing and analyzing the current prototype, we have concluded that 
there are two fundamentally different ways of interaction between submodels, which achieve 
different goals. 

When two submodels A and B interact through an event stream, they are conceptually 
connected in a cause-effect fashion. An event occurring in A might then cause a second event to 
occur in B, and vice versa. Hence, submodels A and B are simply a logical decomposition of a 
single, larger model. Multiple event streams may be needed between the two models, to represent 
different types of events. 

In the example shown in Fig. 1, a queueing network model of traffic is being studied. A 
fundamental parameter of the top model, the number c\ of servers in queue 1, is actually varying 
in time, since the servers in that queue are subject to failures. Instead of trying to include the 
failure and repair process in the queueing model, we can use a second model, this time a 
stochastic Petri net, to represent it. The two models can be developed independently, each of them 
at the desired level of detail. They are connected by the two event streams corresponding to 
failures (firing of transition Fail, arrival of a token in place Down) and repairs (firing of transition 
Reinstate, arrival of a token in place Up), respectively. These events in the Stochastic Petri Net 
(SPN) model correspond to events in the queueing network model, namely a reduction or an 
increase of the number of available servers in queue 1. The initial number k of tokens in place Up 
is the total number of servers. 
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Figure 1: An example of interaction through event streams. 

The solution of such a model can then be simply performed on the flat model, which is 
obtained by considering both submodels at the same time. The drawback of solving the flattened 
model is the size and complexity of the underlying state space and stochastic process, which grow 
rapidly as the number of submodels increases. If simulation is used, however, flattening the model 
is usually an effective decomposition approach. 

The alternative method of interaction between submodels is parameter exchange. Using 
our example again, the two submodels A and B are solved independently. First, the failure and 
repair submodel is solved, to compute the following distribution: 

Pj _ Prob(i servers are up in steady state)   for each i up to c} 

or simply 
E = E[number of servers up in steady state] 

Then, this information is passed to the queueing network model, where it is used to 
approximate the number of servers in queue 1. 

This latter approach can be described as batch, while the former is more interactive. The 
advantages of the batch approach are that it can be very naturally distributed, and each submodel 
solution is, in itself, much smaller. However, representing the interaction between submodels in 
such a static way-for example, using just a real number—can be more difficult on the user's part 
and often introduces an approximation. 

A set of submodels interacting through event streams defines a single, stochastic model. 
The submodels can be defined using different high-level formalisms as long as the submodels can 
then interact by exchanging parameters in some standard way. For example, Fig. 2 shows a 
high-level decomposition of a model into four submodels-a, b, c, and J-which could, in turn, be 
composed of multiple submodels, etc. 



Figure 2: An example of interaction through parameter exchange. 

The quantity xy represents the parameter, or set of parameters, computed from the 
solution of model / and passed to model;'. Since there are circular dependencies, the solution of 
the overall model is obtained by starting with a guess for the value of some xy to bootstrap the 
iterations and then iterating until the values xy are stable within some given precision. 

The following code shows how this iterative scheme is specified in the current prototype: 

converge { /* iterate until converged */ 
real x_ad guess 1.0;   /* initial guesses */ 
real x_bc guess 1.0;   /* initial guesses */ 
real x_db := solve(d(x_ad), 1); /* compute first output of d */ 
real x_dc := solve(d(x_ad),2); /* compute second output of d */ 
converge {     /* specifies an inner iteration */ 
real x_cb := solve(c(x_dc,x_bc),l); 
real x_bc := solve(b(x_db,x_cb),l); 
} 
real x_ba := solve(b(x_db,x_cb),2); 
real x_ca := solve(c(x_dc,x_bc),2); 
real x_ad := solve(a(x_ba,x_ca),l); 

} 

Sharing of solution algorithms and efficient implementation 

Due to the number of formalisms and solution methods necessary to support a variety of 
different kinds of analysis and problem domains, it is completely impractical to separately 
implement each solution method for each possible formalism. The toolset design must allow 
solution methods to be independent of the formalism used to define the model so that each 
solution method can be used on any appropriate model, regardless of the formalism used to 
express the model. 

Our approach is to define a common intermediate representation, the Model Definition 
Language (MDL) and require each formalism to include a compiler for translating models into 
MDL. This allows us to apply a large array of algorithms for the solution of stochastic models to 
any high-level formalism, as shown in Figure 3. The only difficulty with this approach is ensuring 
that the translation to MDL does not lose important information which can be exploited to obtain 
an efficient solution. As a consequence, the most advanced solution algorithms can be 
incorporated into the proposed toolset and share their development cost among multiple 
formalisms. The final result is that the toolset will support a much larger class of systems, will 



perform faster, and will use less memory than any other currently available commercial tools. 
In the prototype, we began integration of the following solution methods: 

• Steady-state analysis of a continuous-time Markov chain (CTMC) 
• Transient analysis of a CTMC 
• Steady-state analysis of a discrete-time Markov chain (DTMC) 
• Transient analysis of a DTMC 

Discrete     I 
Event      1 

Simulation   | 

CTMC      I 
Steady-State I 

Analyzer    | 

DTMC 
Steady-State 

Analyzer 

CTMC 
Transient 
Analyzer 

Figure 3: MDL as a method to integrate formalisms with solution methods. 

Because algorithms exist to transform an SPN or a queueing network into a CTMC or a 
DTMC, provided it satisfies appropriate restrictions on the type of firing or service time 
distributions, the solvers listed above allow us to analyze such SPNs and queueing networks 
numerically. We also initiated work on a simulation engine which will also be applicable to these 
types of formalisms, independent of the type of distributions employed. 

Using MDL allows us to define any number of formalisms on the front end and 
implement various solution algorithms on the back end, and the implementation effort will not 
grow quadratically as it would if we were working on individual tools instead of the integrated 
toolset proposed. 

Representation and manipulation of random variables 

A new requirement that evolved during the development of the prototype toolset was the 
importance of effectively representing and manipulating random variables. 

We define the concept of nature as fundamental in the description of the quantities to be 
manipulated by the toolset. An object's nature can be: 

• Deterministic. It has a set value. 
• Random. It describes a random variable. 
• Process. It describes a model (a stochastic process). 

A deterministic value is exactly what we normally mean when we say value: 3,5.2, TRUE. 



Our models, however, have a fair amount of randomness in them, hence we need to be able to 
describe quantities whose value is only known by a probability distribution: these are random 
variables. A family of random variables indexed by a parameter (time) is then a stochastic 
process. 

The current prototype allows several different operations to be performed upon random 
variables and stochastic processes. The tool checks for errors related to a variable's nature just as 
type checking is enforced in a programming language. 

Language Specifications 

One novel innovation of our approach is the introduction of a textual language for 
expressing and evaluating stochastic models. The language, SMART, is declarative in nature and 
contains constructs for defining and manipulating random variables and stochastic processes. 
The language syntax is in the style of the C programming language. An interactive SMART 
interpreter is one the primary user interfaces to our environment, but SMART programs can also 
be used to express complete models. SMART is described in detail in the appendix. 

The Model Description Language (MDL) mentioned above is the other key language in 
our environment. It is used as a low-level model assembler language into which all or most 
high-level models can be mapped. MDL functions as the central, integrating component of the 
toolset architecture. The critical test of MDL is that it must be sufficiently general to represent 
models from a wide variety of formalisms, without losing the ability to exploit formalism specific 
knowledge to obtain an efficient solution. MDL is also described in the appendix. 

Support for Model Composition 

The mechanisms described above provide the structural underpinnings to support the 
integration of different submodels (including those developed with different formalisms) into a 
combined model (a model of models). Such techniques can increase the capacity to analyze 
complex models by one or more orders of magnitude. 

The next logical step is to provide a means to define standard interfaces to submodels so 
that they can be effectively composed in variety of ways. The architecture provides a simple 
Model Specification Language (MSL) for defining interfaces to models. MSL describes only the 
interface, not the implementation of a model. The same language is used to define the external 
interface to all models, regardless of how they are constructed. In contrast, model 
implementations are described in a language designed expressively for a particular formalism, 
such as a reliability modeling language or a general queueing network language. MSL serves a 
role in our environment similar to that served by Module Interconnection Languages (MILs) in 
heterogeneous, distributed, software systems. 

The key requirements related to model specifications are: 

• Model specifications must contain all information needed to 
properly use the model. 

• Models must be able to import and export parameters and events, 
with type checking support. 

• The model specification should be strictly separated from its 
implementation. 

• It should be possible for multiple models to conform to the same 
specification. 

7 



The specification formally captures the information necessary to use a submodel (its 
inputs and outputs, types, and constraints). This information can then be used automatically 
during model composition to construct the proper connections, check type conformance and 
constraints, and invoke the necessary toolset components (e.g., compilers, analyzers). The 
specification also defines available options for controlling the solution of the model, such as the 
degree of accuracy required from a numerical approach or the level of confidence required from a 
statistical approach. 

Models can communicate in two very different fashions, by parameter exchange and by 
event exchange. Model specifications are the formal mechanism used to define the interfaces 
through which models exchange parameters and events. 

The parameter exchange case is similar to that used to pass values to and from procedures 
in a programming language. Input parameters can be of various types, such as a scalar real value 
or even an empirical distribution represented by an array. Output measures are also defined with 
their names and types in the model specification, though their computation is deferred to the 
model implementation. 

Parameters can also have a random variable or stochastic process nature. Such parameters 
can be used to implement an event exchange style of model composition. To fully support event 
exchange communication, a mechanism must be provided for defining possible events. 

Specifications may contain constraints to ensure the validity of the model. Example 
constraints might restrict the range of values of a particular input value or ensure that an invariant 
condition remains satisfied. Constraints can be automatically tested during analysis to help ensure 
the integrity of the results. 

Model specifications allow model composition to proceed at a relatively high level of 
abstraction. Maintaining a strict separation between model specification and implementation 
prevents higher level models from depending on the internal details of their submodels. This 
allows a submodel to be refined or drastically changed over time without impacting the 
development of the models that use it, though the final results or the computation resources 
required may be affected. In fact, the specification must not imply the formalism used to create 
the model. For this reason, the MSL contains no formalism-specific constructs. This separation is 
crucial to allow flexible model composition from individual submodels. 

There are many reasons why it is desirable to have multiple models for the same 
specification. Often a model is refined over time as more information is known about the system 
or different aspects of system behavior are incorporated into the model. Because modeling always 
requires balancing competing cost and accuracy demands, it is frequently useful to maintain 
several different models for the same system: for example, a fast, low-cost, low-fidelity model for 
quick estimates and a more expensive, but higher fidelity model for more detailed analysis. If two 
such models conform to the same formal specification, it will be possible to easily switch between 
them as needed. 

Another important reason why multiple models may exist for a single specification relates 
to the model refinement process. To allow traceability of results to the defining model, the toolset 
must allow version numbers to be attached to model implementations, computed results, and 
specifications. Thus, even if there is only one model for a particular specification, there will likely 
be several versions of that model over time. 

Figure 4 illustrates the concept of model specifications. In this case, a single composite 
model uses two submodels, A and B, in its implementation. There are two choices for each 
submodel: two versions of Model A, and two different implementations of Model B. The 

8 



definition of the composite model does not depend upon which particular versions of each 
submodel are chosen; it will work with any legal combination. The composite model only requires 
that submodels meet the published specifications. Of course, different numerical results may be 
obtained with different combinations of submodels. The goal is to facilitate the process of 
obtaining those different results. 

Model A 

ijsggcificatjon 

S 

Composite 
Model 

(SMART) 

S. 

/vantinn.1 

Model B 
specification 

version 2 
Model A 

Implementation 
(SPN) 

z 
Model B 

Implementation 
(Simulation) 

Model B 
Implementation 

(EQN) 

Figure 4: An illustration of model specification. 
Extension to New Formalisms 

The toolset will provide a set of standard formalisms, including stochastic Petri nets 
queuemg networks, fault trees, and various low-level, state-space-based formalisms such as' 
CTMCs. These formalisms are general in the sense that they are not targeted to a particular 
application domain. A skilled modeling expert can use these general formalisms to represent 
systems from a wide variety of problem areas, such as computer systems design, 
communications, and flexible manufacturing system design. The most comprehensive 
formalisms, such as stochastic Petri nets, can be used, in principle, to model any discrete-state 
system. In practice, however, these formalisms alone will not suffice because they require a casual 
user to provide an excessive amount of detailed input, often in an unfamiliar context. 

The solution is to provide custom formalisms to potential users, which will allow them to 
express their systems in the most appropriate and familiar language (possibly graphical) For 
example, a system engineer designing communication networks might want a language with 
primitives such as "bidirectional channel," "external load," and a built-in set of standard 
protocols. A designer of flexible manufacturing systems will want to express a model in terms of 

cells,    part schedules," and "storage facilities." A reliability engineer will want to talk about 
components," "failure rates," "repair facilities," and so on. 

Clearly, however, it is not feasible or advisable to write a new tool for each class of 
customer. Instead the toolset infrastructure is designed to facilitate the rapid addition of new 
formalisms. The MDL concept aids tremendously in this regard. Since the speed with which add 
new formalisms can be added to the toolset will be a major factor in determining which markets 
to target, other methods will be developed to automate much of the process of adding new 
formalisms to the environment. 

One promising approach is to define a Formalism Description Language (FDL) which is 
used to precisely define each formalism in the toolset, including how to translate its constructs 
into MDL. Once the elements of the formalism are described (including how to visualize a model 
expressed in the formalism, assuming that graphical editing capabilities are appropriate), a set of 



software tools may be applied to translate this formalism description into a new instantiation of 
the toolset, with the new formalism as the main (or only, if so desired) user-visible interface. This 
approach builds on the successful compiler construction techniques that are now standard practice 
in that field. 

One serious challenge to the automated addition of new formalisms is the need tor the 
final translator to translate models into efficient MDL. This task is simplified somewhat by 
moving some general purpose optimizations into the general MDL analyzers. Early results 
indicate that this is feasible for state-space-based formaUsms, which are to be solved using 
numerical methods based on the enumeration of the state-space or discrete-event simulation. 
More specialized formalisms might have specialized solution algorithms as well, and their 
efficient solution might indeed require a certain amount of custom implementation. 

The proposed architecture facilitates the addition of new formalisms, even those requiring 
custom implementation that might not be defined efficiently using FDL. Once a compiler has 
been developed which translates models from the new formalism into the common MDL, models 
developed using the new formalism can immediately take advantage of all existing MDL 
analyzers. Even if such a compiler is developed by traditional techniques, it can reuse common 
expression parsing and other software shared by the other formalism compilers. Similarly, the 
graphical editors for new formalisms can share substantial software components with existing 
graphical editors. Finally, the object-oriented framework for the toolset facilitates customization 
by providing abstract, superclass standard components that new subclasses can extend. 

Parallel computation of independent parametric models 

Most modeling studies involve solving the same model for a large set of parameter 
choices. For example, we could solve a computer network system when the number of nodes in 
the network is 16,32,64,128, or 256 (five choices), the speed of the communication links is 10 or 
20 Mbit/sec (two choices), and there are three different network connectivity configurations. This 
results in 30 sets of parameters, each of them corresponding to a different system/model. 

Since the 30 solutions are independent, an Experiment Manager is needed only to 
schedule each solution on an available workstation. If enough workstations are available, the 
speedup of this approach can be almost linear, where the solution time is the maximum among the 
individual solution times. 

This simple approach to parallelism is not new. Existing systems implemented using the 
approach will be examined, analyzed, and, if possible, adapted for use in the proposed toolset. 

Parallel simulation 

Simulation is a statistical method; therefore it requires multiple runs to obtain accurate 
statistics (tight confidence intervals). The idea of parallel simulation is simply to execute N 
independent runs on N available workstations. This is similar to the approach described in the 
previous subsection, the only difference being that, instead of varying parameters, we are varying 
the initial seeds used by the discrete-event simulator to generate the streams of random events. 
Also, in this case, the speedup depends on the time for the worst-case run, but it can be considered 
almost linear in practice. 

Again, this is a simple approach that has been considered before in the academic literature 
and has been implemented in academia, but no commercial tool has adopted it, despite its 
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simplicity. 

Parallel solution of submodels in a decomposed model 

As described above, decomposition of a model into submodels interacting through 
parameter exchange can drastically reduce execution time and memory requirements. 
Furthermore, the dependency graph among submodels immediately suggests a potential for 
parallelism. Consider, for example, the dependency graph in Figure 5. Submodel a must be solved 
first. Then, b and c can be solved next, in parallel. After b is solved, d and e can be solved, while g 
must wait for c and d. Finally, h can be solved. 

Thus, this dependency graph naturally suggests a parallelism level of two (up to two 
submodels, b and c, and later d and e, can be solved in parallel). 

Figure 5: An example of inherent parallelism in a dependency graph. 

Recognition of potential parallelism in the SMART language 

The SMART language is a sequential, declarative language that is used to specify 
interactions among submodels and manage the required computations. However, independent 
declarations can be processed in parallel. For example, the statements: 

real x := mtta(MyCTMC(lambda:= 1.0)); 
real y := mtta(MySPN); 
compute x and y as the mean-time-to-absorption of two distinct models, one called 

MyCTMC, 
presumably a CTMC with absorbing states, and the other called MySPN. Since the two 

models do not depend on each other, and x is not used in the call mtta (MySPN), we can, in 
principle, recognize this parallelism and compute the value of x and y on different workstations. 
Recognizing this type of parallelism is feasible, although it requires care, since ignoring a 
dependency among declarations would result in erroneous computations. 

A more challenging task is, perhaps, deciding whether the existing parallelism should be 
exploited. This is probably the case in our example, since the mean-time-to-absorption 
computation requires substantial execution time, especially if the size of the underlying processes 
is large. However, the syntactically similar statements: 

real x   :=  3*lambda; 
real y   := expected(unif(1.0,2.0)); 
should not be parallelized because they require negligible computation. A heuristic for 

this decision must be developed, based on a guess of the required computation time and on the 
number of available workstations. 

Distributed simulation 

11 
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The SMART editor manager allows to define input files containing multipl e related 
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(sub)models, possibly expressed in different formalisms (in the figure we show stochastic Petri 
nets, queueing networks, and Markov chains, but this is not an exhaustive list). The SMART 
editor manager uses an ordinary textual editor for the description of the measures to be computed 
and for the definition of interactions between submodels, but it calls specialized graphical editors 
for the appropriate formalisms whenever possible, that is, when editing individual submodels. 
These graphical editors are all instantiations of GEGE, (generic environment for graph editing), a 
project being developed at William and Mary. GEGE, described in the appendix is not properly 
part of the toolset, since it only needs to be used to generate the editors used in the toolset, so it is 
not distributed as part of the toolset (it is shown used dotted lines in Fig. 6). 

-* Datapath 

■► Control path Visualize i 
2/3-D Plot 
generator SMART 

result 
manager Table 

compiler 

%%* 

Figure 6: Overall architecture. 

The SMART editor manager uses the various formalism compilers to check the syntactic 
correctness of the model being edited. These also ensure strict type checking, and enforce correct 
parameter usage for arrays and functions, thus catching many possible types of errors before 
model the analysis starts. Once a SMART model is saved and ready to be analyzed, the SMART 
solver manager can be invoked. It uses the appropriate formalism compilers to generate a 
low-level MDL model, still possibly containing multiple submodels. MDL is a unifying modeling 
language, general enough so that all high-level formalisms managed by SMART can be naturally 
and efficiently translated into it. The solver manager can then use any solver on this MDL model. 
In Fig. 7, we show a state space generator, a discrete-event simulator, and steady state and 
transient solvers, but, again, this list is not exhaustive. When the SMART solver manager has 
completed analysis of a model, the computed results are stored using a database. 

These results can then be queried and displayed using the SMART result manager, which 
uses 2-D and 3-D plotting programs, and table generator facilities in the most common formats 
(ASCII, Postscript, latex, etc.). 

The SMART solver manager is the most complex components of the toolset. One of its 
key features is its ability to manage the concurrent solution of multiple submodels, using a 
network of workstations. It requests the compilers to compile a SMART model, resulting in a 
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compiled MDL model. Then the SMART concurrency manager can use the sequential description 
of the model and extract its intrinsic parallelism. A "work unit" is the smallest set of 
computations that the SMART concurrency manager determines should be performed 
sequentially on a single processor. These work unit are piped to the SMART distribution manager, 
which dispatches them to the available workstations on the local area network where the SMART 
solver manager is running. Each work unit causes the computation of a partial result, which can 
be as simple as a single value, or a complex as a multidimensional set of values. The SMART 
distribution manager ensures that the partial results are computed, and stores them into a 
temporary local database, where all the values required for the solution of a model are kept during 
one solution run. The SMART solution manager selects from this local database the results which 
according to the user requests specified in the SMART model, should be stored in permanent 
storage. 

 *• Datapath 

*   Control path 

SMART 
solver 

manager 

SMART 
concurrency 

manager 

Figure 7: Solver architecture. 

Examples of work units are: 

• The computation of a single value. 

The following SMART statement specifies that x is to be computed as the expected value 
of a random variable defined as the minimum of an exponentially distributed random variable 
with rate 0.2 and the constant 3: 

real x   := avg(min(expo(0.2),3)); 
Since x does not depend on any other value, it can be computed as an independent unit of 

work. 

• The computation of an array of values. 

14 



The following SMART statement specifies to compute, in array f, the first ten factorial 
numbers. 

for   (int   i   in   {0..9})    { 
int  f[i]    :=  if(i  ==  0,   1,   i*f[i-l]); 

Given the way they are specified, these ten values are computed sequentially, f[0], f[l], 
and so on. The SMART concurrency manager recognizes this and defines the computation of the 
entire array as a single work unit. Note that, had we used the statements: 

int fact(int n) := if(n == 0, 1, n*fact(n-1)); 
for (int i in {0..9}) { 

int f[i] := fact(i); 
instead, ten independent work units would have been generated. Most likely, this increase 

in parallelism would not be of any use, since the total amount of computation for f[9] alone would 
be equivalent to that required for the sequential computation of the entire array. 

For a simple computation such as the factorial, the overhead of starting a remote 
computation outweighs the benefits of parallelism. Hence, in an actual implementation, a "work 
size threshold" should be achieved before a work unit is actually executed concurrently. The 
SMART concurrency manager must also label work units as "ready (to run)" or "waiting (for 
partial results)". A work unit u is ready if all the work units wy, u2, un which compute partial 

results needed to define the value of u have already been computed. 
Consider for example the following SMART code: 
real f(int iparm) := ...; 
real g(real rparm, int iparm) := ...; 
real h(real x) :=...; 
real A := f(3); 
real B := f (4) ; 
real C := f(5); 
real D := min(A,B,C); 
real E := f(0); 
real F := if(D < E, g(D,l), g(E,0)); 
real G := h(D); 
The left portion of Fig.8 illustrates graphically the dependencies among the variables. An 

arc from a to b indicates that the value of a is needed before the computation of b can start. Nodes 
not on the same directed path may be computed concurrently. In the example, given enough 
available workstations, the value of A, B, C, and E can be computed concurrently at the beginning. 
Then, as soon as A, B, and C have been computed, D can be computed. When both D and E are 
computed, the computation of F can begin, while the computation of G can start as soon as D is 
computed. 

In the current prototype, the correct behavior is achieved by scanning the model, 
generating the work units, as defined above, and connecting them in a dependency graph. A node 
without incoming arcs can begin execution immediately. A node a with incoming arcs from ay, 

ay..., a is placed in a waiting list, with a counter set to n; every time a node a. with an arc to a is 

computed, the counter for a is decremented; when the counter reaches 0, a is ready to be 
computed. 

This approach works correctly for acyclic dependency graphs. If a graph contains cycles, 
the nodes in the cycles are treated sequentially, the assumption being that the user has correctly 
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specified some kind of recursion. Consider for example the SMART code used to compute the 
first 100 Fibonacci numbers into the array V: 

int FIB(int j); 
for (int i in {1..100}) { 
int V[i] := FIB(i); 

} 
int FIB(int j) := if(j <= 2, 1, V[j-1] + V[j-2]); 
Here every element of the array V, except the first two, depend on previous elements, 

hence no parallelization is performed. The entire sequence of statements constitutes a single work 
unit. Note that, in the right portion of Fig.8, the node corresponding to function FIB is shown in 
dotted lines. This is because the value of a function is never explicitly stored (it is not a partial 
result); however, since the function uses partial results (previous values of V in this case), it can be 
said that its computation must wait for the values of V. 

Note that the same dependency graph would apply if we had the following (incorrect) 
definition for FIB: 

int  FIB(int  j)    := V[j]; 
Also in this case, the entire sequence of statements would constitute a single work unit. 

However, as soon as its computation would begin, the computation of V[l] would call FIB[1], 
which would in turn attempt to access the value of V[l]. 

Since this value is not yet known, a runtime error would occur. The detection of this type 
of problems is guaranteed by labeling each SMART value as "not-yet-computed" or 
'computed". 

"  ^    "" ^    '    v : FIB :• 

F 

Figure 8 Dependencies among work units. 

Prototype Toolset 

The goals for the prototype activity were twofold: to test some of the basic feasibility 
assumptions behind the toolset and to develop an early working prototype for use in 
experimenting with various modeling scenarios. The first goal was achieved, and we conclude that 
multiple models can efficiently coexist and interact at various levels. Substantial progress toward 
the second goal was accomplished, but will continue as a separate project at William and Mary. 

The prototype completed at the end of Phase I allows, through textual interaction, the 
specification of continuous and discrete time models resulting in a Markovian behavior. Multiple 
interacting models can be defined, and they can exchange parameters or events. A compiler for 
the textual language was developed, allowing us to test usage scenarios by describing complex 
systems from various domains. 

III.   Commercialization Results 

The toolset and supporting products developed focus initially upon aerospace and defense 

16 



industries, where system failure can have devastating consequences, including loss of life. 
Specifically, the toolset supports the performance, reliability, and availability modeling needs of 
the aerospace and defense markets. 

We intend to concentrate on reliability modeling initially. This market was chosen 
primarily because the current available modeling toolsets in these domains are lacking 
functionality in many ways, but the need for accurate timely quantitative analysis in high. We 
also have recognition and contacts in those communities. 

Performance modeling is our second target, because it is a natural extension of the 
techniques for reliability, and because we have contacts and some recognition there as well. 
Outside the aerospace and defense sectors, the next most logical customer bases include computer 
and communication network designers. Secure funding for commercialization activities. 

The ability of our toolset to support new formalisms easily will allow us to tailor the 
environment to the needs and notations of users in different application domains. Specific 
features, a user interface, usage scenarios, on-line help, and training material will support the 
notation, process, and output needs of aerospace and defense systems developers. 

A commercial version of this prototype will require several accompanying support 
materials such as tutorials, libraries of component submodels, on-line help, graphical user 
interfaces, and user support. Development of such a toolset will require the resources typical of a 
complex software project: a product development plan, design documents, reviews, test plans, 
configuration management tools, and professional management and scheduling tools. 

IV. Conclusion 

There is an increasing need for powerful simulation and modeling tools to analyze the 
performance and reliability aspects of complex systems. This phase ISTTR project resulted in the 
design and prototype implementation of an integrated extensible modeling environment which 
provides the functionality necessary to exploit dramatic improvements in analysis capability made 
possible by recent and classical advances in performance and reliability modeling. Such features 
include support for decomposition of complex models, communication among submodels, 
language constructs to represent and manipulate random variables and stochastic processes, and 
tools to manage parallel and distributed solution techniques. Two novel aspects of our 
architecture are the MDL and SMART languages described in the appendix. These languages 
provide much of the flexibility which makes this architecture unique. 

17 



Appendices to STTR Final Report 

Gianfranco Ciardo 
Department of Computer Science 

College of William and Mary 

October 18, 1995 



Chapter 1 

The SMART language 

This chapter describes the SMART (Simulation and Markovian Analysis of Reliability and Timing) Language, 
which is the main textual interface for the user of the toolset. The SMART Language has the following goals: 

• Performance, reliability, availability, and performability modeling are increasingly necessary steps in the 
design, development, and maintenance of complex systems, and we want to provide a unifying language 
for the definition and analysis of these models. 

• Most, if not all, commercial software tools in this area are simulation-based, while other tools, mostly rooted 
in academia, use numerical solutions based on continuous time Markov chains (CTMCs) and requiring the 
solution of large systems of linear equations. SMART merges these two trends, allowing both simulation 
and numerical solution, plus some logical analysis as well. 

• Recent developments have shown the feasibility of appying numerical methods to the solution of more 
complex stochastic processes [15, 16, 14, 11, 8, 7]. Hence, SMART greatly facilitates the description of 
these processes and can be used to experiment with various solution techniques for them. 

t Since any model of a real system is likely to exceed the capacity of the machine (memory bounds) and the 
patience of the user (time bounds), fixed-point iterative techniques for the decomposition and solution of 
complex models can be easily specified in SMART. To the best of our knowledge, this is the first attempt 
to embed intop a tool such capabilities. 

• A complementary approach when faced with large models is to use distributed algorithms. The SMART 
syntax is defined so that the inherent concurrency can be easily detected, and multiple processors, such as 
workstations on a network, can be used for the concurrent solution of a complex model. 

Rather than in the particular syntax, the relevance of this presentation lies in the formalization of a mecha- 
nism to talk about multiple interacting stochastic processes (e.g., the number of processes waiting for the CPU), 
random variables (e.g., the number of processes waiting for the CPU at time 10), and deterministic quantities 
(e.g., the expected number of processes waiting for the CPU at time 10) in a formal way, and how to ask 
questions about them. Indeed, a SMART model usually contains many submodels in different formalisms, such 
as stochastic Petri nets (SPNs) or queueing networks (QNs).  Strictly speaking, the actual syntax to express 
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Figure 1.1: A SMART Language file with submodels. 

a SPN or a QN is not part of the SMART Language, since each submodel can reside in a separate file which 
can be processed by an ad-hoc compiler. It is then best to see the SMART Language as the glue that allows a 
formal method of describing the interactions between the various submodels. Nevertheless, the syntax for each 
submodel will have a strong resemblance with the SMART language, especially in regard with the "expression 
syntax", since a user of the toolset will have to define expressions both within each individual submodel, and at 
the SMART level. This is illustrated in Fig. 0.1, where a file f ileO contains the top-level model information, 
namely, the definition of two submodels, and a fixed-point iteration over them. The exact structire of the sub- 
models, a CTMC and a DTMC, respectively, is declared in separate files, filel and file2, respectively. The 
actual syntax of these two files is only required to have a "SMART flavor", see for example the definition of 

local parameters 1, m, and r in filel. 
SMART allows the direct description and solution of the following types of stochastic processes: 

• Semi-Markov processes (SMPs) and their subclasses: independent SMPs (ISMPs), continuous time Markov 
chains (CTMCs), and discrete time Markov chains (DTMCs). 

• SPNs and QNs. These high-level formalisms define an underlying generalized semi-Markov process (GSMP). 
In special cases, the GSMP might be a Markov-regenerative process (MRGP), a SMP, an ISMP, a CTMC, 

or a DTMC [11]. 

The most important characteristic of a model expressed in a given formalism is whether it describes a discrete- 
time stochastic process {X^ : k G IN} or a continuous-time stochastic process {X{t) : t > 0}. In SMART , 
two classes of discrete-state Markov processes are fundamental: DTMCs and CTMCs. In DTMCs, the state 
of the model is observed at each integer time, while, in CTMCs, events occur at any time, but the amount 



of time elapsing between any two events is exponentially distributed. Such models can be combined in very 
natural ways, and are quite general, due to the concept of phase-type distributions, which is applicable both to 
the discrete and the continuous case. In both discrete-time and continuous-time models, the timing of events 
can have a mass at zero (immediate events) or at infinity (nonoccurring events). The underlying DTMCs and 
CTMCs can be solved numerically for steady-state or transient analysis. Alternatively, discrete-event simulation 

can be employed for the solution. 
However, a model containing both discrete timing (other than zero or infinity) and continuous timing, 

defines an underlying process which can be independent semi-Markovian, semi-Markovian, Markov-regenerative, 
or generalized semi-Markovian. The numerical solution of these processes is sometimes possible depending, 
among other factors, on whether a transient or steady-state solution is desired. Discrete-event simulation is 
often the method of choice in these cases, especially for transient analysis. 

SPNs and QNs are just two of the most commonly used high-level formalisms. Other high-level formalisms 
could be added. The only requirement for their integration is that they have an underlying stochastic process 

which can be managed by SMART. 

1.1 SMART Language overview 

SMART uses a strictly-typed declarative language. All types are predefined, that is, dynamic definition of new 
types is not possible, except for the creation of multi-dimensional arrays of predefined types. 

A SMART Language file consists of a sequence of statements. Most of them declare or define (declare and 
specify the value of) a "function" of some set of "parameters". As a special case, the set of parameters can be 
empty, this is useful to declare constants. In this sense, "constant" simply means that the object being described 
is a function with no parameters, not to be confused with a non-random, or "deterministic", quantity, as opposed 
to a random variable or stochastic process. To ensure strict type-checking, the "type" of the function and of its 

parameters must be defined. 
It is possible to define compound declarative statements, either to talk about arrays of values (the for 

statement), or to specify fixed-point iterations (the converge statement). The ability to specify arrays is 
particularly useful for parametrics studies, that is, when exploring how the results are affected by a change in 
the modeling assumptions, such as the initial number of tokens in a place of a SPN, or the value of a state-to-state 

transition probability in a DTMC. Compound statements can be nested. 
Another type of statement is used to set SMART options. For example, there are options to control the 

behavior of the solution algorithms, or to interact with permanent storage. By default, the tool coomunicates 
results onto the "standard output". However, using the appropriate options, it is possible to write these values 
into an ordinary ASCII file, or into a custom-formatted file, for inspection by a specialized inspector utility. 
This utility can then be used to select, visualize, and further manipulate results stored in one or more files. 

1.2 Deterministic SMART calculations 

We start with several examples that use the SMART Language to perform simple "calculator-like" computations. 
This illustrates the power of the language without having to introduce random variables and the more complex 



formalisms right away. 

1.2.1 A constant: ir 

An example of a simple definition is 

real pi   := 3.14; 

which defines the constant pi of type real with value 3.14. Since the SMART Language is declarative, not 
procedural, the value of pi is now set for the rest of its life. A second definition 

real pi   := 3.1415; 

causes an error. Indeed, even a second occurrence of exactly the same definition causes an error: each function 
can appear exactly once on the left-hand side of a definition statement. 

1.2.2 A one-parameter function: the factorial 

We can define a function to compute the factorial of an integer, n! = 1 • 2 • ... • n, as 

int fact(int n)   := if(n==0,l,n*fact(n-l)); 

The predefined function if returns the value of the second or third parameter, according to whether the first 
parameter is true or false, respectively. 

Note that we can call the function fact with either the Ada-like [29] named parameter notation, fact (n: =7), 
or with positional parameter notation, fact(7). Either mode can be used, as desired. The named parameter 
notation is especially useful to avoid errors and improve readability when a function has a large number of 

parameters. 

1.2.3 Arrays: the first ten factorials 

Since function fact has a parameter, its definition does not cause any computation to be performed. To request 
the value of the first ten factorial numbers, we can then use the following statement: 

for  (int  i in {0..9})   { 
int f[i]   := fact(n:=i); 

} 

The set of values specified for i is from 0 to 9, with a step of one (the default). To refer to a particular value 
computed inside a for statement from a subsequent statement, the familiar "square bracket" array notation is 
used. For example, the value of f corresponding to i equal 7 is denoted by f [7]. 

Since for statements can be nested, the dimensionality of a declaration is determined by the sequence of 
iterators, from the outermost to the innermost. For example, 



for  (real x in {0.1,0.2})  { 
for  (int k in {1..5},   int  i in {3})  { 

int g[x][k][i]   :=  ...   ; 

} 

> 

defines a tridimensional array g (of constants). The first iterator is a real. This is legal, but care must be taken 

to avoid indexing errors due to the finite precision of floating point arithmetic. The expression g[0.1] [1] [3], 

for example, is well-defined. However, the expression g[pow(10,-l)] [1] [3] evaluates to null, an undefined 

value, unless pow(lO.-l), which is supposed to compute the power 10-1 = 0.1, returns the exact same floating 

number representation as that used to store 0.1 on the particular machine on which the analysis is being run. 

It is illegal to specify a function with parameters inside a for statement, as in the following: 

for  (int  i  in {0..9})  { 

int fact(int n)   := if(n==0,l,n*fact(n-l)); 

int f[i]   := fact(i); 

} 

This is because such a function would be either independent of the iterators, as fact is in the above example, 

hence it could be specified outside the for statement, or dependent on them, in which case the semantic of 

calling it from outside the for statement would be ill-defined, since the iterators have no value outside the for 

statement. We could allow the definition of arrays of functions with parameters by allowing a statement of the 
form 

for  (int  i in {0..9})  { 

int f [i](int n)   :=  ...; 

} 

but the same effect would be achieved by 

int f(int  i,   int n)   :=  ...; 

at the top level, hence, we avoid this complication altogether. 

In our example, we can actually get rid of the definition of the function fact: 

for  (int  i in {0..9})  { 

int f[i]   := if(i==0,l,i*f[i-1]); 

} 

This definition is the most efficient, but it uses the fact that the for statement is executed in order, from i equal 

0 to i equal 9. If we had specified the set of values for i as {9. .0. .-l}, or in any other order, this definition 

would fail. Furthermore, it only defines how to compute the first ten factorial numbers, it actually computes 
them, but it would not help much if we needed the value 15!. 

The scope of the iterators in a for statement is local to that statement and to those included in it. All other 
identifiers have global scope. 



12.4     Parameter defaults 

Normally, each formal parameter in the definition of a function must correspond to an actual parameter in a 
function call. However, it is possible to set default values for the formal parameters. If we define 

int f2(int a:=l,   int b)   := a*b; 

the following function cdls^^ 

exactly equivalent. Note that f2(3) is not allowed: named parameters must be used if some parameters are not 
listed explicitly. x 

1.2.5    A parallelizable for statement 

The for statement is a natural candidate for parallelization. Indeed, it is possible to recognize parallelism in 
SMART and perform the concurrent computation of all the values specified in a for statement, provided no 
dependencies from one "iteration" to the next exist, 

For example, the 100 values 

for  (int i in {0..9},   int j  in {0..9})  { 
int measure[i] [j]   := mymodeKi, j) ; 

can be computed concurrently, This reduces the total execution time in cases where the solution of mymodel re- 
quires substantial computation, and multiple processors are available. Such situations are common in parametric 
modeling studies. 

1.2.6     Overloading: a real factorial 

The SMART Language allows the overloading of identifiers. The same identifier can be used to define more than 
one function, as long as the order, type, or name of the formal parameters can be used to distinguish which one 
is meant by a function call. For example, we could define a "real factorial", for n greater or equal one, as 

real fact(real n)   := if(n<l,0.if(n<2,n,n*fact(n-l))); 

Then fact(8) and fact(5.4) would call the standard (integer) factorial or the real factorial, respectively. 
Overloading also applies to arrays. If we defined 

for  (int  i in {0..9})  { 
int f[i] := fact(i); 

} 

for (real i in {1.0..9.0..1.0}) { 
real f[i] := fact(i); 

} 

J An alternative would be to use the same semantic as in C++, where any number of parameters at the end can be set to the 
default without having to list them explicitly in positional notation? 



the expressions f [2] and f [2.0] would refer to the first and second array, respectively. 
Examples of illegal overloading are: 

int f(real y ):=  ...   ; 
int f(real x)   :=   ...   ; 

(it is impossible to decide which one is intended when positional parameters are used). 

int f(real x,   int  i)   :=  ...   ; 
int f(int i,  real x):=  ...   ; 

(it is impossible to decide which one is intended when named parameters are used). 

int f(int i:=l)   :=  ...   ; 
int f(real x:=l)   :=  ...   ; 

(it is impossible to decide which one is intended by the function call f (default)). 
The type returned by a function is not used to resolve ambiguities due to overloading. 

1.2.7    Type promotions: manual or automatic? 

Assume now that we defined an integer constant k, and we now want to call the real factorial function with k 
as the actual parameter. One reason for wanting to do this is that, if k is large, the integer factorial function 
might result in an overflow, while the value real factorial might still fit in the floating point representation of 

the machine. 
We can force an automatic conversion by summing a (real) zero to k, as in fact (k+0.0). This method works, 

but it is inelegant. A much better way is to use an explicit type conversion, fact((real)k). 
For simplicity's sake, most promotions such as the int to real promotion for int k in the expression k+0.0, 

occur automatically. Table 0.4 lists the automatic type promotions which can take place when evaluating an 

expression. 
Promotion of the actual parameters in a function call or of the expressions used to index an array, however, 

requires special attention, because of the possible ambiguities arising from overloading. Consider for example 

the definitions 

real x(int i,  real j)   :=  ...; 
real x(real  i,   int j)   :=  ...   ; 

The function calls x( 1,1.0) and x( 1.0,1) clearly refer to the first and second definitions, respectively. The 
call x (1,1), however, could refer to either, depending on whether the first or the second actual parameter is 
promoted to real. First, an attempt to find a function requiring no promotion at all is made, that is, a function 
for which the formal parameters or indices exactly match the actual parameters or indices of the call. Only if 
this fails, promotion is attempted. If only one choice for promoting the types of the parameters or indices exists, 
promotion occurs, accompanied by a warning. If multiple choices are possible, as in the previous example, an 

error is issued. 



1.2.8 Using iterators to define iterator values 

The value of an iterator can be used to define the value of further iterators: 

for  (real x in {1..9},  real y in {x/2})  { 
real v[x] [y]   := x*y; 

} 

This is, of course, analogous to 

for  (real x in {1..9})  { 
real y[x]   := x/2; 
real v[x]   := x*y[x] ; 

} 

or to 

for  (real x in {1..9})  { 
real v[x]   := x*x/2; 

> 

However, these simplifications would not be possible if multiple values were defined for y: 

for  (real x in {1..9},  real y in -(x/2,0.1})  { 
real v[x][y]   := x*y; 

} 

Syntactically, the iterators of a for statement must always be scalars: y depends on x in the above examples, 
but its dependency is implicit, that is, it would be an error to specify 

for  (real x in {1..9},  real y[x]   in {x/2,0.1})  { 
real v[x][y[x]]   := x*y[x]; 

} 

1.2.9 Assertions: the null value. 

Our real factorial function returns zero if it is called with an argument less than one. The integer factorial 
defined in Section 0.3.2 has an even worse behavior: it is caught into an infinite recursion if called with a 
negative parameter. 

To prevent these problems, we can use the special value null, and modify our factorials as follows: 

int fact(int n)   := if(n<0,null,if(n==0,l,n*fact(n-l))); 
real fact(real n)   := if(n<l,null,if(n<2,n,n*fact(n-l))); 

Attempting to perform any operation when one of the operands evaluates to null causes an error. Hence, the 
only way an expression evaluating to null does not cause an error is if it becomes an argument in a function call, 
and the function knows how to deal with this value. The predefined function if, for example, simply returns 
the value of the second or third parameter; if the selected one is null, so is the returned value. The same holds 
for the predefined function case. The predefined function isNull is also available. It returns true or false 
according to whether its argument has value null or not. 
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1.2.10    Fixed-point iterations: solving x = x1/2 

An important feature of the SMART Language is its ability to describe fixed-point type iterative solutions, 
where multiple parametric models are solved repeatedly, starting with initial guesses for their parameters, and 
successively refining them, until convergence within a given precision is achieved, or a maximum number of 
iterations is reached. For example, we can find the zero x = 1 for the expression x-x1'2 by transforming it into 
the fixed-point equation x = xl/2, and starting with any positive guess for x: 

converge { 
real x guess 1000; 
real x := sqrt(x); 

} 

The value of x after the converge statement is the computed fixed-point value. The precision e to which this 
value is computed can be changed in an option statement. The iterations are stopped when two subsequent 
values for x differ by less than e (this is not equivalent to saying, and does not guarantee that, x is within e of 
the true fixed-point solution). 

We stress that, unlike the for statement, the converge statement does not affect the dimensionality of the 
objects declared in it. 

1.2.11     Nested fixed-point iterations 

It is possible, and often advisable, to nest fixed-point iterations. Consider the fixed-point iteration 

converge  { 
real d guess 0.5; 

real c guess 0.5; 

:= fb(d.c); real b 

real c 

real a 

real d 

= fc(d,b); 
= fa(b,c); 
= fd(a); 

> 

The dependency graph of Fig. 0.2 represents this situation.  An arc from x to y signifies that the value of x 
depends on the value of y. 

However, we might know that b and c require many iterations to stabilize, but that, fortunately, each call 
to f b and f c requires little computation. Then, the following nested scheme might be advantageous: 

converge  { 
real d guess 0.5; 

real b guess 0.5; 

converge { 

real c := fc(d,b); 

real b := fb(d,c); 



Figure 1.2: A nested dependency graph. 

} 
real a  := fa(b,c); 
real d  := fd(a); 

} 

now, the values of b and c are iterated upon until they stabilize, for each updated guess for d. 
It must be possible to determine whether enough guesses are provided to start the iterations. The rule is 

simple: the dependency graph must be a directed acyclic graph (DAG) if all the nodes for which a guess is 
provided are removed. For example, the dependency graph of Fig. 0.2 must have guesses for one of the following 
sets of nodes: {a, b}, {a, c}, {b, c}, {b, d}, or {c, d}. It is legal to provide more guesses than needed (e.g., {a, b, c}), 
but only a subset of them are used. 

Note that the position of the statement real b guess 0.5; causes the guess 0.5 to be used only once, the 
first time the innermost converge statement is executed. The subsequent fixed point iterations, every time the 
value of d is updated, will use the latest value for b, not 0.5. This second behavior would have been obtained by 
moving the statement real b guess 0.5; inside the innermost converge statement, but this would probably 
worsen the convergence behavior. 

1.2.12     Nested for and converge statements 

A for statement can contain a converge statement, as in 

for  (int  i  in {0..5})   { 
converge { 

real x[i]  guess  1000; 
real x[i]   := sqrt(x[i]   + i); 

> 
} 

This specifies the computation of the six fixed point solutions to the six equations x = (x+i)1/2, for i E {0,1... 5}. 
Consider now the statement 

for  (int  i  in {0..5})  { 
converge  { 

real x[i]   guess  1000; 
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real x[i]   := if(i==0,sqrt[x],sqrt(x[i-l]+i)); 
} 

} 

This computes the fixed point solution x[0] as one, as expected. However, for any other value of i, no fixed 
point iteration is specified. For example, for i equal one, the "fixed-point iteration" is 

real x[l]   := sqrt(x[0]   +1); 

This simply sets x[l] to 21/2, since the value of x[0] is now set to one (possibly with a small error, since this 
value is computed numerically with an iterative procedure). However, the use of previously computed values is 
not always meaningless in a converge statement. For example, 

for  (int  i  in {0..5})  { 
converge  { 

real x[i]  guess if(i==0,1000.x[i-1]); 
real x[i]   := sqrt(x[i-l]  + i); 

} 
} 

uses the converged value x[i-l] as initial guess for x[i]. This is reasonable, since it could be expected that 
the value of the fixed point changes incrementally as i goes from zero to five. Only for the first one, x [0], we 
really need to provide a guess. 

While converge statements can appear inside for statements, the converse is illegal. 2 

1.2.13     Declarations and recursion: convolution 

The difference between declaration and definition has already been discussed. Any number of declarations such 
as 

int func(int n,  real x); 

can appear, but the definition of the same function must be eventually appear as well: 

int func(int n,  real x)   :=  ...   ; 

The number, type, name, and order of the parameters in all the declarations and in the definition must match 
(otherwise they are assumed to refer to different, overloaded, functions). 

Declarations accomplish the same goal as the "forward" keyword in Pascal or the templates of ANSI C. For 
large models, it might be desirable to place all the declarations at the top of the input file, postponing the 
definition of their values to a later section. 

Declarations are needed when two function refer to each other recursively. For example, consider the compu- 
tation of the normalization constant in a single-class closed product-form queueing network with load-dependent 

2 This might change in the future, since we might want to iterate on arrays of values. 
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servers. Using the notation of [28], assume that there are c, servers with service rate //,- at node i e {0,l,...,m}, 
with relative visit ratio u,-. Then define />,• = v,//x.-, 

/ kl ifk<Ci 
ßi{k> ~ { Ci\ctCi   ifk>Ci  ' 

and 

r'W-\ 1 ifJfc = 0 * 

If the total customer population is n, the joint probability of having A;,- customers at node i € {0,1,..., m) is 

1     m    p** 

The computation of the normalization constant 

can be performed recursively defining 

' r0(j) if i = 0 

C.-Ü) = { J2Ci-i(j-k)ri(k)   if z # 0  ' 
I  fc=0 

so that C(n) = Cm(n). 
Let us now show how to compute the value of C(n) using the SMART Language. The inputs m, n, c, u, and 

// are read first, using the two functions getlnt and getReal, which read an int or a real from the current 
input stream, respectively: 

int m:= getlnt; 

int n:= getlnt; 

for (int i in {0..m}) { 

int 

real 

real 

} 

c[i]  : = 

v[i]  : = 

mu[i] : = 

getlnt; 

getReal; 

getReal; 

Then, using the real factorial function of Section 0.3.6, we can define p, ß, and r: 

real rho(int  i)   := v[i]/mu[i]; 
real betaCint  i,   int k)   := if(k<c[i],fact((real)k),fact((real)c[i])*pow(c[i],k-c[i])); 
real r(int  i,   int k)   := if(k==0,l.pow(rho(i),k)/beta(i,k)); 

Finally, we can define C with the following statements: 

12 



real  C(int  i,j); 

real sum(int i,   int j,   int k)   := if(k==0,C(i,j),sum(i,j,k-l)+C(i,j-k)*r(i,k)); 
real C(int  i,   int j)   := if(i==0,r(0,j),sum(i-l,j,j)); 

Note that no computation is performed, since C is defined as a function, not an array. Normally, we want to 
save the last column of the tableau C,(j), hence we could define an array as follows: 

for (int j  in {0..n})  { 
real C[j]   := C(m,j); 

} 

The above definition of C as a function is correct but extremely inefficient, because it causes the value C(i,j) 
to be recomputed every time it is needed. The complexity is reduced to 0(n2m) if the values C(i,j) are stored 
in a table that allows direct lookup. Hence, we should change the definitions of C and sum as follows: 

real sum(int  i,   int j,   int k); 
for  (int  i  in {0..m},   j   in {0..n})  { 

real  C[i][j]   := if(i==0,r(0,j),sum(i-l,j,j)); 
} 
real sum(int  i,   int j,   int k)   := if(k==0,C[i][j],sum(i,j,k-l)+C[i][j-k]*r(i,k)); 

Now, the entries C[i] [j] for i equal m contain the desired final column of the tableau, and there is no reason 
to save it as done before. To increase the efficiency, r, p, and ß should be arrays as well. Also, we have ignored 
overflows and underflows in this example, although we did set the type of ß to real instead of int, and used 
the real factorial, to postpone the occurrence of an overflow. 

1.3    Random variables 

The SMART Language can describe random variables with discrete or continuous time phase-type distributions, 
corresponding to the types ph int or ph real, respectively. For these, special operations are possible, and 
both numerical and simulation solution can be applied. Random variables with more general distributions are 
simply identified by as rand int or rand real, but they can be manipulated only in restricted ways, although 
simulation is always applicable. 

1.3.1     Discrete phase-type distributions 

The class V of (possibly defective) discrete phase-type (DDP) distributions can be informally defined as the 
distributions of the time to absorption in a generic DTMC. 

More formally the following definition, from [9], is needed. A random variable X is said to have a DDP 
distribution, X ~ V, iff there exists an absorbing DTMC {A^ : k € IN} with finite state space A D {/, t) 
and initial probability distribution given by [Pr{^™ = i},i e A], such that states A \ {f,t} are transient and 
states {/,£} are absorbing, and X is the time to reach state / (for "final"): X = min{k > 0 : A^ = /}.  If 
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A[0] = 2w.p.l Const(2) 
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Figure 1.3: Examples of DDP distributions. 

PT{A® = /} > 0, the distribution has a mass at the origin, Pr{X > 0} > 0. If Pv{A^ = i} > 0 and state i can 
reach state t (for "trap"), the distribution is (strictly) defective, Pr{X = oo} > 0. 

From this definition, it follows that V contains Const(O), Const(l), and Const(oo), and is closed under: 

• Finite convolution.  Given a finite set of independent random variables {X, ~ V : i G {l,...n}}, X = 

• Finite probabilistic choice. Given a finite set of independent random variables {Xt ~ V : i G {1,... n}} 
and a pmf {a, : i e {1,... n}}, X = Xt w.p. a,- ~ V. 

• Finite order statistics. Given a finite set of independent random variables {Xt ~ V : i G {l,...n}}, 

X(i) ~ V. X(i) indicates the i-th order statistic, that is, the i-th smallest value among {Xt : i G {1,... n}} 

counting duplicate values. In particular, this includes X{1) = min{X,- : i € {1,... n}} and X{n) = max{X, : 
ie{l,...n}}. 

• Infinite geometric sum. Given an infinite set of independent and identically distributed (iid) random 

variables {X{ ~ V : i e IN+} and an independent geometric random variable N, X = E.^i X{ ~ V. 

• Multiplication by a natural number. Given a random variable X ~ V and c G IN, cX ~ V. 

Fig. 0.3 offers a few examples of DDP distributions. If the distribution is not defective, the absorbing state 

t is unreachable given the initial probability distribution and it can be removed, as in the representation of 

Geom(a,3) and Const(2). An example of a random variable with non-negative integer support which does not 
have a DDP distribution is JV2, where N ~ Geom(a). 
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1/2 

Unif(0,3) 

Figure 1.4: Equivalent representations for a DDP distribution 

[9] shows that the "minimal" representation for a given DDP distribution is not unique. For example, Fig. 
0.4 shows how to represent the distribution Unif(0,3) in two different ways. Note that the "complexity" of the 
two representations is the same, if it is measured as a pair (n, a) where n is the number of nodes, four in both, 
and a is the number of arcs plus the number of states with positive initial probability, eight for both. 

In the SMART Language, a random variable with a DDP distribution is defined using a predefined function, 
or operators. Also, any int value can be promoted to a ph int. Assume that X and Y are independent random 
variables defined as: 

ph int X   := geom(0.7); 
ph int Y  := unif(l,5); 

Then, we can define: 

ph int sumXY := X+Y; 

ph int prodNX := 4*X; 

ph int chooseXY := choose(0.3,X,0.7,Y); 

ph int minXY := min(X.Y); 

ph int maxXY := max(X.Y); 

ph int geomX = geom(O.l.X); 

ph int sumXX = X+X; 

ph int chooseXX = choose(0.3,X,0.7,X); 

However, definitions > such as: 

ph int diffXY  : = X-Y; 

ph int sumRX   : = 4.0+X; 

ph int prodRX  : = 4.0*X; 

ph int prodXY  : = X*Y; 

are incorrect because DDP distributions are not closed under these operations. A correct definition for them 
would be 
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rand int diffXY := X-Y; 
rand real sumRX := 4.0+X; 
rand real prodRX := 4.0+X; 
rand int prodXY := X*Y; 

The definition of sumXX and chooseXX requires special attention. The set of independent random variables 
involved in an expression must be recognized. In the above cases, this set contains only X, but only through a 
symbolic manipulation the expressions can be recognized to be equivalent to: 

ph int sumXX := 2*X; 
ph int chooseXX   := X; 

which are DDP distributions. 
A note about independence: every time a random variable is defined using predefined functions such as 

Bernoulli or Expo, it is assumed to be independent of every other random variable defined so far. On the other 
hand, whenever a random variable is defined using previously defined random variables, such as sumXY above, 
it is dependent on them. Hence, X and Y are independent, but X and sumXY of Y and sumXY are not. 

1.3.2     Continuos phase-type distributions 

A class C of (possibly defective) continuous phase-type (DCP) distributions can be defined. Its properties are 
analogous to those of V. A random variable X is said to have a DCP distribution, X ~ C, iff there exists an 
absorbing CTMC {A(t) : t > 0} with finite state space A 2 {/, *} and initial probability distribution given by 
[Pr{.4(0) = t}, i G A], such that states A\ {f,t} are transient and states {/,*} are absorbing, and X is the time 
to reach state f: X = min{< > 0 : A(t) = /}. If Pi{A{0) = /} > 0, the distribution has a mass at the origin. If 
Pr{.4(0) = i} > 0 and state i can reach state t, the distribution is (strictly) defective. 

C contains Const(O), Expo(l), and Const(oo), and is closed under: 

• Finite convolution.   Given a finite set of independent random variables {Xt ~ C : i G {l,...n}}, X = 

• Finite probabilistic choice. Given a finite set of independent random variables {Xi ~C:i6{l,... n}} 

and a pmf {a,- : i G {1,... n}} over {1,... n}, X = X, w.p. a, ~ C. 

• Finite order statistics.   Given a finite set of independent random variables {Xi ~ C : i G {l,...n}}, 

X® ~ C. 

• Infinite geometric sum.   Given an infinite set of independent and identically distributed (iid) random 
variables {Xi ~ C : i G IN+} an independent geometric random variable N, X = JliLi Xi ~ C. 

• Multiplication by a nonnegative real number. Given a random variable X ~ V and c > 0, cX ~ C. 

Just as for DDP distributions, the representation for a given DCP distribution is not unique. Indeed, if 
we interpret the arc labels in Fig. 0.4 as rates instead of probabilities, we obtain two representations for a 
distribution obtained as a mixture of Erlang(i, 1), i = 0,..., 3, where we define Erlang(0, A) to be Const(O). 

Assume that X and Y are independent random variables defined as: 
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ph real X  := expo(O.l); 
ph real Y   := expo(0.2); 

Then, we can define: 

ph real sumXY 

ph real prodRX 

ph real chooseXY 

ph real minXY 

ph real maxXY 

ph real geomX 

= X+Y; 
= 4.0*X; 
= choose(0.3,X,0.7,Y); 
= min(X.Y); 
= max(X.Y); 
= geom(O.l.X); 

However, definitions such as: 

ph real diffXY 

ph real sumRX 

ph real prodXY 

= X-Y; 
= 4.0+X; 
= X*Y; 

are illegal because DCP distributions are not closed under these operations. A correct definition for them would 

be 

rand real diffXY 

rand real sumRX 

rand real prodXY 

= X-Y; 
= 4.0+X; 
= X*Y; 

We stress that ph int and ph real values can be freely intermixed in an expression, but the resulting 
random variable is neither a DDP nor a DCP distribution: it has a mixture distribution, rand real, which can 
be managed only in limited ways (discrete-event simulation). 

1.4    State-space formalisms 

We now illustrate the formalism-dependent portion of the SMART Language, starting with the simplest for- 

malisms, the state-space ones. 
The specification of a state-space model consists mainly of the set of possible states, and of the timing and 

probability rules by which the model goes from one state to the next [17, 5]. 

1.4.1     Discrete-time Markov chains 

The following statement specifies the DTMC dl (Figure 0.5), with a parameter x. 

dtmc dKreal x)   := { 
state a,b,c; 
init(a:1.0); 
arcs(a:b:1.0,b:a:x,b:c:l-x); 
real ml   := prob(at(inState(c),100)); 

}; 
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0c: <D 

Figure 1.5: An example of a DTMC. 

The definition of the "value" of the DTMC dl is done via a "block", that is, a sequence of statements enclosed 
in braces, used on the right-hand-side of an assignment. The statement state a,b,c; declares three "states". 
Since a state does not carry a value, the statement has the form of a declaration, but it is basically a definition. 

The two subsequent statements are just expressions. Formally, this is legal because the two function calls 
return no value, we say that they have type void. The annotation operator ":" is used to annotate an expression, 
effectively creating a composite type. For example, a: 1.0 associates the real value 1.0 with the state a, while 

a:b indicates an arc from state a to state b. 
Finally, the last statement, with a familiar syntax, defines a "measure", that is, a quantity which can be 

compute when needed. For example, 

for   (v  in {0.1..0.9..0.1})   { 
real val   := dl(v).ml; 

} 

computes, in val, the nine values corresponding to the probability of DTMC dl being in state c at time 100, 

when the formal parameter x varies from 0.1 to 0.9. 
The selector operator, ".", acts just like in ANSI C, where it is used to select a field in a structure. In our 

case, the "fields" are the identifiers declared within the block. For example, a denotes a state within the block, 
but the same state must be referred to as dl(x: = ...) .a outside the block. 

Blocks can only appear at the top level and cannot contain within them a for or converge statement, or 

other blocks. 
The block specifying a DTMC can contain at most one call to the following functions: 

• void init(state:real sl:rl,   ...); 
Sets the initial probability of state si to ri. The call can be absent only if there is a single state or if the 
DTMC is ergodic and no transient analysis is requested. The probabilities must be nonnegative values, 
but they are not required to sum to one, since they are automatically normalized. However, at least one 

state must have positive probability. 

• void arcs(state:state:real sl:tl:rl,   ...); 
Sets the probability of going in one step from state si to state tz in the DTMC to ri. If no arcs at all are 
specified from a state a, the state is assumed to be absorbing (an arc from a to o w.p. 1 is assumed). If the 
call is absent, all states are assumed to be absorbing. The probabilities of leaving a particular state a must 
be nonnegative values, but they are not required to sum to one, since they are automatically normalized. 

• void assert(bool bl,   ...); 
Defines a set of assertions, which must be true in each state. If, at any point in the execution, assertion 

bz does not hold, an error is issued. 
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Figure 1.6: An example of a CTMC. 

1.4.2     Continuous-time Markov chains 

The specification of a CTMC is analogous to that of a DTMC. The following code defines the CTMC in Fig. 
0.6: 

ctmc cKreal lambda)   := { 
state a.b.c; 
init(a:l); 
arcs(a:b:2*lambda,b:a:1.0,b:c:lambda); 
real ml   := prob(at(inState(c),100)); 

>; 

The compound statement defining a CTMC can contain at most one call to the functions init, arcs, and 
assert defined as for a DTMC. The only differences between CTMC and DTMC specifications are: 

• The arc annotations represent rates, not probabilities, hence they are not normalized. 

• Arcs from a state to itself are ignored, but a warning is issued. 

1.4.3    Independent semi-Markov processes 

The arc annotations in an ISMP are probabilities (possibly to be normalized), as in a DTMC, but the holding 
time in each a state can be arbitrarily distributed, instead of being deterministically equal one: 

ismp il   := { 
state a.b.c; 
init(a:1); 

arcs(a:b:l,b:a:0.9,b:c:0.1); 
holding(a:const(3),b:expo(20.0)); 
real ml   := prob(at(inState(c),100)); 

}; 

The compound statement defining an ISMP can contain at most one call to the functions init, arcs, and 
assert, defined as for a DTMC, and to holding, defined as follows: 

• void holding(state::r sl:hl,   ...); 

where x is ph int, ph real, rand int, or rand real. Sets the holding time for state s to h. If a state has 
no outgoing arcs, no holding time needs to be specified, the state is considered absorbing with a holding 
time equal const (infinity). 
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1.4.4    Semi-Markov processes 

The most general state-space process that can be explicitly specified in the SMART Language is a SMP. In this 
case, a distribution is associated with each arc from i to j. There are two ways to define a SMP: 

Race: given that the current state is i, specify the distribution Fid(t) for the time required to go from i to j in 
isolation, that is, ignoring the other arcs leaving from i. The actual semantic is then that of a race among 
all the arcs leaving i, hence the holding time for i is implicitly assigned the distribution of the minimum 
of these times, over all the arcs leaving state i. 

Preselection: choose according to a specified probability ptj the next state j, given that the current state is 
i. Then, sample the distribution Fitj(t) to select the time required to go from i to j in isolation. 

Figure 0.7 shows the equivalent ways to specify simpler processes (DTMCs, CTMCs, or ISMPs) as SMPs, with 

either method. 
For example, the following specifies a preselection SMP si exactly equivalent to the ISMP il specified in 

the previous section: 

smp si   := { 
state a,b,c; 
init(a:1); 
arcs(a:b:l:const(3),b:a:0.9:expo(20.0),b:c:0.1:expo(20.0)); 

real ml   := prob(at(inState(c),100)); 

}; 

Alternatively, we could have used a race specification for the arcs: 

arcs(a:b:const(3),b:a:expo(18.0),b:c:expo(2.0)) 

The race specification is often more convenient and more natural. However, it does not specify how to "break 
the tie", and this might be a problem in the presence of discrete distributions. 

The compound statement defining a SMP can contain at most one call to the functions init and assert, 
defined as for a DTMC, and arcs, an overloaded function: 

• void arcs(state:state:a; sl:tl:vl,   ...); 
where x is ph int, ph real, rand int, or rand real. Sets the distribution for the time to go from state 

si to state ti to vi, according to a race semantic. 

• void arcs(state:state:real:x sl:tl:pl:vl,   ...); 
where x is ph int, ph real, rand int, or rand real. Sets the probability and the distribution for the 
time to go from state si to state ti to pi and vi, respectively, according to a preselection semantic. 
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